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概要
𝑆2 の自明な円板束内に埋め込まれた 2次元多様体で，𝑆2 を分岐被覆する曲面の構造を持つも

のを（𝑆2 上の）2次元ブレイドと呼ぶ．任意の絡み目が閉ブレイドの表示を持つのと同様に，任
意の向き付け可能な曲面絡み目は 2 次元ブレイドの表示を持つことが知られている．本講演で
は，2次元ブレイドの向き付け不可能な拡張として射影平面上の 2次元ブレイドを導入し．それ
らのうち次数が 3のものは標準形という単純な形まで変形できることを示す．

1 導入
曲面結び目 [1]とは (古典的)結び目の高次元化であり，R4 に埋め込まれた閉曲面を指す．

例 1.1. R4 に埋め込まれた実射影平面で，以下のモーションピクチャーで表示されるものを自明な射
影平面結び目と呼び，ここでは 𝑃2 で表す．

𝑃2 :
t = 0t = -4 t = 4

図 1: 𝑃2 のモーションピクチャー

𝐷2 を 2次元円板，𝑆2 を 2次元球面とし，射影 𝐷2 × 𝑆2 → 𝑆2 を pr2 で表す．

定義 1.2. 𝑆2 上の 2次元ブレイド [2]とは，𝐷2 × 𝑆2 に適切に埋め込まれた閉曲面 𝐹 で，次の条件を
満たすものである．

(1) 制限写像 pr2 |𝐹 : 𝐹 → 𝑆2 は分岐被覆写像である．

𝐷2 × 𝑆2 を R4 に標準的に埋め込まれた 𝑆2 の正則近傍と見なすことで，𝑆2 上の 2次元ブレイドを
曲面絡み目と考えることができる．

∗ E-mail:u916923f@ecs.osaka-u.ac.jp



古典的な結び目理論で，任意の古典的結び目が閉ブレイドの表示を持つことが Alexanderの定理と
して知られている．この高次元化として，次が知られている．

定理 1. [2]任意の向き付け可能な曲面絡み目は，𝑆2 上の 2次元ブレイドとしての表示を持つ．

この主張の曲面絡み目の向き付けに関する仮定が外せるかについては，まだ未解明である．

1.1 2次元ブレイドのチャート表示
𝐷2 内の 𝑚 点集合 𝑋𝑚 を 1つ取って固定する．𝑆2 をふたつの円板 𝐵2 ∪ 𝐵̄2 に分割することを考え

る．𝐵̄2を十分小さく取れば，𝑆2 上の 2次元ブレイド 𝐹 の 𝐷2 × 𝐵̄2 への制限は 𝑋𝑚 × 𝐵̄2 に等しいと見
なせる．したがって，𝑆2 上の 2次元ブレイドはその 𝐵2 上への制限から一意に復元できると言える．
射影 𝐷2 × 𝐵2 → 𝐵2 を pr2 で表す．

定義 1.3. ブレイド状曲面 [4]とは，𝐷2 × 𝐵2 に適切に埋め込まれた曲面 𝑆で，次の条件を満たすもの
である．

(1) 制限写像 pr2 |𝑆 : 𝑆 → 𝐵2 は分岐被覆写像である．
(2) 𝜕𝑆 はソリッドトーラス 𝐷2 × 𝜕𝐵2 内の閉ブレイドである．

分岐被覆写像に関しては [3]の 13章を参照されたい．分岐値 𝑦のファイバー (pr2 |𝑆)−1 (𝑦) が 𝑚 − 1
点集合であるようなブレイド状曲面をシンプルなブレイド状曲面という．以下本稿ではシンプルなブ
レイド状曲面のみを考える．
条件 (2)を次のより強い条件 (2’)に置き換えたものは 𝐵2 上の 2次元ブレイド [2]と呼ばれる．

(2’) 𝜕𝑆 = 𝑋𝑚 × 𝜕𝐵2．

分岐被覆写像 pr2 |𝑆 の次数をブレイド状曲面 𝑆 の次数と呼ぶ．ブレイド状曲面の例をモーションピク
チャーで以下に示す．

図 2: ブレイド状曲面

定義 1.4. 2つのブレイド状曲面 𝑆, 𝑆′ が同値であるとは，𝑆 と 𝑆′ が

• 境界を固定して
• 𝐷2 束のファイバーを保つ

ような 𝐷2 × 𝐵2 のアンビエントイソトピーで移り合うことを言う．すなわち同相の連続な 1パラメー
タ族 {ℎ𝑡 : 𝐷2 × 𝐵2 → 𝐷2 × 𝐵2}𝑡 ∈[0,1] であって



• ℎ0 = 1𝐷2×𝐵2，ℎ1 (𝑆) = 𝑆′

• ℎ𝑡 |𝐷2×𝜕𝐵2 = 𝜕𝑆

• アンビエントイソトピー {𝜂𝑡 : 𝐵2 → 𝐵2} で，任意の 𝑦 ∈ 𝐵2 に対して ℎ𝑡 (𝐷2 × {𝑦}) =

𝐷2 × {𝜂𝑡 (𝑦)}を満たすものが存在する．

定義 1.5. (𝐵2 上の) 次数 𝑚 のチャートとは，各辺に向きとラベルが与えられた有限グラフ Γ ⊂ 𝐵2

で，次の条件を満たすものである．

(C1) 各頂点は 1, 4または 6価頂点であり，ラベルは 1以上 𝑚 − 1以下の整数である
(C2) 4価頂点に集まる 4辺は |𝑖 − 𝑗 | > 1を満たす整数 𝑖, 𝑗 でラベル付けされ，対角線どうしが同じ

ラベルと向きを持つ．(図 3左)
(C3) 6価頂点に集まる 6辺は |𝑖 − 𝑗 | = 1を満たす整数 𝑖, 𝑗 が交互に現れるようにラベル付けされ，

連続する 3辺が頂点に入り，残りが出る向きを持つ．(図 3右)
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図 3: 交差 (左)と白頂点 (右)

チャートとブレイド状曲面は図 4–6のように対応する．
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図 4: 辺の内点のモーションピクチャー

2 𝑃2 上の 2次元ブレイドとMb上のブレイド状曲面
閉区間 [−1, 1] を 𝐵1 で表す．
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図 5: 黒頂点，極小点のモーションピクチャー
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図 6: 交差，白頂点のモーションピクチャー

2.1 𝑃2 上の 2次元ブレイド
R4 における 𝑃2 の正則近傍を 𝐷2 ×̃ 𝑃2 と書き，𝐷2 束の射影 pr2 : 𝐷2 ×̃ 𝑃2 → 𝑃2 を考える．

定義 2.1. 𝑃2 上の 2次元ブレイドとは，𝐷2 ×̃ 𝑃2 に埋め込まれた閉曲面 𝐹 で，次の条件 (1)を満たす
ものである．

(1) 制限写像 pr2 |𝐹 : 𝐹 → 𝑃2 は分岐被覆写像である．

また 𝑃2 上の二次元ブレイド 𝐹, 𝐹 ′ が同値であるとは，それらがファイバーを保つ 𝐷2 ×̃ 𝑃2 のアンビ
エントイソトピーで移り合うことを言う．

図 7に 𝑃2 上の 2次元ブレイドの例を示す．



t = -4 t = 0

t = 4

図 7: 𝑃2 上の 2次元ブレイド
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弧 𝑎 ⊂ Mb 𝑎 での切り分け

図 8: Möbiusの帯の切断

2.2 Mb上のブレイド状曲面
𝑃2 を以下のように分割し，Möbiusの帯と同相な成分を Mb，円板と同相な成分を 𝐵2 と書く．成

分Mb, 𝐵2 を用いて，𝐷2 ×̃ 𝑃2 を

𝐷2 ×̃ 𝑃2 = 𝐷2 ×̃ Mb ∪ 𝐷2 × 𝐵2 (♯)

と分割する．𝑃2 上の 2次元ブレイド 𝐹 を (♯)に沿って

𝐹 = (𝐹 ∩ 𝐷2 ×̃ Mb) ∪ (𝐹 ∩ 𝐷2 × 𝐵2)

と分割すると，𝐹 |Mb := 𝐹 ∩ 𝐷2 ×̃ MbはMb上のブレイド状曲面になる．
Mbを図 8中の弧 𝑎 で切断したものを 𝑏 = (Mb \ 𝑁 (𝑎)) ∪ 𝑎−1 ∪ 𝑎1 と書く．𝑎 からそのコピー 𝑎±1

への自然な同相を 𝑔±1 : 𝑎 → 𝑎±1 で表す．次の関係式を満たす同相 𝑓±1 : 𝑎±1 → 𝐵1 を考える．

𝑓1 ◦ 𝑔1 = − 𝑓−1 ◦ 𝑔−1

ℎ(𝑎±1 (𝑡)) = (𝑡,±1) を同時に満たす同相 ℎ : 𝑏 → 𝐵1 × 𝐵1 を 1つ取って固定する．1 × ℎ : 𝐷2 × 𝑏 →
𝐷2 × (𝐵1 × 𝐵1) によってMb上のブレイド状曲面と 𝐵1 × 𝐵1 上のブレイド状曲面が対応する．

補題 2.2. 上の方法で得られた（境界の一部に制約を課された）ブレイド状曲面は，次に定義する
Möbius型チャートによって表示できる．



定義 2.3. 正方形 𝐵1 × 𝐵1 上に描かれた次数 𝑚 のチャート Γ が Möbius 型であるとは，正方形
の水平対辺 𝐵1 × {±1} の近くで図 9 のようになっていることを言う．すなわち，水平対辺上で
ℎ(𝑎1 (𝑡)), ℎ(𝑎−1 (𝑡)) と書かれる点のペアは同時に Γに含まれ，その 2点を含む辺のペアは同じラベル
と向きを持つ

通常のチャートは正方形の上下対辺と交わらないMöbius型チャートと思うことができる．
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図 9: Möbius型条件

補題 2.4. Möbius型チャート Γによって表示されるMb上のブレイド状曲面は同値を除いて一意に定
まる．これを 𝑆Mb (Γ) と表す．

2.3 主結果
講演者は 𝑃2 上の 2次元ブレイドが，twistedなMöbius型チャートで表されるMb上のブレイド状

曲面と自明な 2次元ブレイドの和で書けることを示した．また twistedで次数が 3であるMöbius型
チャートは，標準形に変形できることを示した．

定義 2.5. Möbius型 𝑚-チャート Γ ⊂ 𝐵1 × 𝐵1 が 𝑡-twistedであるとは，正方形の垂直対辺 {±1} × 𝐵1

の近くで図 10のようになっていることを言う．すなわち，

(P1) {−1} × 𝐵1 は Γとの共通部分を持たず，
(P2) {+1} × 𝐵1 は Γの |𝑡 | (𝑚 − 1) 辺と交わる．このとき

• 𝑡 > 0ならば |𝑡 | (𝑚−1)辺は全て正方形 𝐵1 ×𝐵1から出る向き，< 0ならば入る向きを持ち，
• ラベルは上から順に 1, 2, . . . , 𝑚 − 1のユニットが |𝑡 | 回繰り返されるように現れる．

定理 2. 任意の 𝑃2 上の 2次元ブレイド 𝐹 に対し，−2𝑚-twistedチャート Γと 𝐵2 上の自明な 2次元
ブレイド 𝐷 が存在し，

𝐹 = 𝑆Mb (Γ) ∪ 𝐷.
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図 11: 標準形　　

このチャート Γを 𝐹 を表示するチャートと呼ぶ．

定理 3. 𝑡 ∈ Z \ {0} とする．次数が 3である任意の 𝑡-twistedチャート Γに対し，標準形のチャート
Γ′ であって

Γ ≃ Γ′

を満たすものが存在する．

定義 2.6. TwistedなMöbius型チャート Γ ⊂ 𝐵1 × 𝐵1 が標準形であるとは，

(1) 𝐵1 × 𝐵1 の境界と交わる辺は黒頂点と {+1} × 𝐵1 上の境界点を結んで得られる辺のみであり
(2) 𝐵1 × 𝐵1 の内部に含まれる辺は 2 つの黒頂点どうしを結んで得られる，ラベル 1 の辺のみで
ある

ことをいう．(図 11)

系 4. 任意の 𝑃2 上の 2次元 3-ブレイド 𝐹 は標準形の 3-チャートによって表示される 3-ブレイド 𝐹 ′

に変形できる．
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